MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE (AUTONOMOUS)

I-B.Tech I-Semester Regular Examinations (MR23), February - 2024 ENGINEERING PHYSICS

(COMMON TO ECE, CSE (AI&ML), CSE (DS), and AI&DS BRANCHES)

Time: 3 hours

Max. Marks: 70

Question Paper consists of Part-A and Part-B Answer **ALL** the question in **Part-A and Part-B**

Q.No.		$\mathbf{PART-A} (10 \mathbf{X} \mathbf{2M} = \mathbf{20M})$	CO	BTL	Marks			
1	а	What are coherent sources?	CO1	L1	2M			
	b	Differentiate between Fraunhofer and Fresnel diffractions.	CO1	L2	2M			
	с	Draw the crystal planes for the Miller indices (100) and (111)	CO2	L3	2M			
	d	Why the crystal can act as space grating?	CO2	L1	2M			
	e	What is meant by dielectric constant?	CO3	L1	2M			
	f	Define soft and hard magnetic materials?	CO3	L1	2M			
	g	Explain the physical significance of wave function (ψ) .	CO4	L2	2M			
	h	Determine the wave length of an electron accelerated from rest through a potential difference of 100 V.	CO4	L3	2M			
	i	Define drift and diffusion currents in Semiconductors	CO5	L1	2M			
	j	Write any two applications of Hall effect?	CO5	L3	2M			
PART-B(5 X 10M = 50M)								
	a	Explain how Newton's rings are formed in the reflected light and derive the expression for the diameter of bright rings.	CO1	L3	6M			
2	b	Newton's rings are observed in the reflected light of wavelength 5900 \dot{A} . The diameter of 10^{th} dark ring is 0.5 cm. Find the radius of curvature of lens used.	CO1	L3	4M			
		Or						
	a	Derive an expression for resolving power of a grating.	CO1	L3	5M			
3	b	Explain construction and working of Nicol's prism with neat diagrams.	CO1	L3	5M			
	\wedge		-	-	-			
	а	Explain the terms (i) Space lattice (ii) Basis (iii) Unit cell and (iv) Bravias lattice	CO2	L3	6M			
4	b	Estimate the Atomic packing fraction of FCC in a cubic crystal	CO2	L3	4M			
		Or						
5	a	State and explain Bragg's law	CO2	L1	5M			
	b	Explain the Laue's X-ray diffraction method.	CO2	L3	5M			

	What is an internal field? Derive the expression for internal	CO3	L3	1
6	field in a dielectric material.			
	Or			
	What is magnetic moment? Explain the origin of magnetic moment of an atom in magnetic materials.	CO3	L1	-•
7	Explain the Hysteresis loop in magnetic materials	CO3	L3	
		001	T 1	
_	What is a matter wave? Derive the expression for de-Broglie wavelength of a matter wave	CO4	LI	2
8	Derive the expression for Schrodinger time independent wave equation.	CO4	L3	
	Or			
	Write the merits and demerits of the classical free electron theory	CO4	L1	
9	^o What is Fermi-Dirac distribution function? Explain effect of	CO4	L3	
	temperature on it with neat diagrams.			
	a Distinguish between conductors, semiconductors and insulators based on band structure of solids.	CO5	L2	
10	Derive an expression for the carrier concentration in a intrinsic semiconductor.	CO5	L3	
	Or			
	a Derive the expression for Einstein's relation	CO5	L3	
	State and explain Hall effect. Derive an expression of Hall	CO5	L1	
11	coefficient for an n-type semiconductor.			